Positivity in the Grothendieck Group of Complex Flag Varieties
نویسنده
چکیده
We prove a conjecture of A. S. Buch concerning the structure constants of the Grothendieck ring of a flag variety with respect to its basis of Schubert structure sheaves. For this, we show that the coefficients in this basis of the structure sheaf of any subvariety with rational singularities, have alternating signs. Equivalently, the class of the dualizing sheaf of such a subvariety is a nonnegative combination of classes of dualizing sheaves of Schubert varieties.
منابع مشابه
Combinatorial Aspects of the Cohomology and K-theory of Flag Varieties
In this talk we present some recent results related to Schubert and Grothendieck polynomials. These polynomials represent Schubert classes, which form the natural bases of the cohomology and K-theory of the complex flag variety. We present background information on several combinatorial constructions of Schubert and Grothendieck polynomials. Then we present the solution to a conjecture concerni...
متن کامل2 00 5 on Some Noncommutative Algebras Related with K - Theory of Flag Varieties , I
For any Lie algebra of classical type or type G 2 we define a K-theoretic analog of Dunkl's elements, the so-called truncated Ruijsenaars-Schneider-Macdonald elements, RSM-elements for short, in the corresponding Yang-Baxter group, which form a commuting family of elements in the latter. For the root systems of type A we prove that the subalgebra of the bracket algebra generated by the RSM-elem...
متن کاملOn Some Noncommutative Algebras Related with K - Theory of Flag Varieties , I
For any Lie algebra of classical type or type G 2 we define a K-theoretic analog of Dunkl's elements, the so-called truncated Ruijsenaars-Schneider-Macdonald elements, RSM-elements for short, in the corresponding Yang-Baxter group, which form a commuting family of elements in the latter. For the root systems of type A we prove that the subalgebra of the bracket algebra generated by the RSM-elem...
متن کاملOn Some Noncommutative Algebras Related to K - Theory of Flag Varieties , Part
For any Lie algebra of classical type or type G 2 we define a K-theoretic analog of Dunkl's elements, the so-called truncated Ruijsenaars-Schneider-Macdonald elements, RSM-elements for short, in the corresponding Yang-Baxter group, which form a commuting family of elements in the latter. For the root systems of type A we prove that the subalgebra of the bracket algebra generated by the RSM-elem...
متن کامل1 3 Fe b 20 06 ON SOME NONCOMMUTATIVE ALGEBRAS RELATED TO K - THEORY OF FLAG VARIETIES , PART
For any Lie algebra of classical type or type G 2 we define a K-theoretic analog of Dunkl's elements, the so-called truncated Ruijsenaars-Schneider-Macdonald elements, RSM-elements for short, in the corresponding Yang-Baxter group, which form a commuting family of elements in the latter. For the root systems of type A we prove that the subalgebra of the bracket algebra generated by the RSM-elem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007